..

应用与计算数学杂志

A Fast Algorithm for Computing High-dimensional Gauss Quadrature Rules

Abstract

Rustam Grillo*

Gauss quadrature rules are essential for numerical integration, especially in high-dimensional spaces. Traditional methods for computing these rules become computationally expensive and inefficient as the dimensionality increases. This article presents a novel fast algorithm for computing high-dimensional Gauss quadrature rules, significantly reducing computational complexity and improving efficiency. The proposed method leverages sparse grids, tensor decompositions, and adaptive strategies to handle the curse of dimensionality effectively.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward