Nick Russell
The field of crystallography has long been a cornerstone of scientific inquiry, allowing researchers to unravel the atomic and molecular structures of a wide range of materials. Electron crystallography, a specialized branch of crystallography, has emerged as a powerful technique for investigating the microscopic world at the atomic and nanoscale levels. This method utilizes electrons rather than X-rays to probe the structure of crystalline materials, providing unique insights into the arrangement of atoms within a crystal lattice. In recent years, there have been remarkable advances in electron crystallography, driven by innovations in electron microscopy, detector technology and computational methods. The most crucial aspect of electron crystallography is the analysis of diffraction patterns produced when electrons interact with the crystal. The diffraction pattern is a result of the interference of scattered electrons, providing information about the crystal's structure. By analyzing the diffraction pattern, scientists can determine the spatial arrangement of atoms in the crystal lattice.
分享此文章