..

广义谎言理论与应用杂志

Algebraic Structures Derived from Foams

Abstract

J. Scott Carter1 and Masahico Saito

Foams are surfaces with branch lines at which three sheets merge. They have been used in the categorification of sl(3) quantum knot invariants and also in physics. The 2D-TQFT of surfaces, on the other hand, is classified by means of commutative Frobenius algebras, where saddle points correspond to multiplication and comultiplication. In this paper, we explore algebraic operations that branch lines derive under TQFT. In particular, we investigate Lie bracket and bialgebra structures. Relations to the original Frobenius algebra structures are discussed both algebraically and diagrammatically.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward