..

应用与计算数学杂志

An Advanced Real-Time Multiple Object Tracker in Variant Outdoor Environments

Abstract

Hamed Moradi Pour and Saeid Fazli

Tracking of humans in dynamic scenes has been an important topic of research. There has been considerable work in tracking humans and other objects in recent years. A real-time method for tracking multiple moving objects based on effective Gaussian Mixture Model (GMM), and identifying the moving objects with Joint Probability Data Association Filter (JPDAF) is proposed in this paper. Most tracking algorithms have better performance under static background but get worse results under background with fake motions. Therefore, most of the tracking algorithms are used in indoor environment. An adaptive Gaussian Mixtures has a nice property in resolving this problem. This paper uses recursive equations to constantly update the parameters of a Gaussian Mixture Model and to simultaneously select the appropriate number of components for each pixel. Therefore, this method is more time and memory efficient than the common GMM with the fixed component number. In tracking multiple moving objects, problems occur when objects pass across each other. The JPDAF method is used in this paper to solve this problem. Moreover, it can effectively deal with the various scenes such as the indoor scene, the outdoor scene, and the cluttered scene. The experimental results on our test sequence demonstrate the high efficiency of the proposed method.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward