..

生物识别与生物统计学杂志

Bias in Estimation of a Mixture of Normal Distributions

Abstract

Spencer Lourens, Ying Zhang, Jeffrey D Long and Jane S Paulsen

Estimating parameters in a mixture of normal distributions dates back to the 19th century when Pearson originally considered data of crabs from the Bay of Naples. Since then, many real world applications of mixtures have led to various proposed methods for studying similar problems. Among them, maximum likelihood estimation (MLE) and the continuous empirical characteristic function (CECF) methods have drawn the most attention. However, the performance of these competing estimation methods has not been thoroughly studied in the literature and conclusions have not been consistent in published research. In this article, we review this classical problem with a focus on estimation bias. An extensive simulation study is conducted to compare the estimation bias between the MLE and CECF methods over a wide range of disparity values. We use the overlapping coefficient (OVL) to measure the amount of disparity, and provide a practical guideline for estimation quality in mixtures of normal distributions. Application to an ongoing multi-site Huntington disease study is illustrated for ascertaining cognitive biomarkers of disease progression.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward