..

生物工程与生物医学杂志

Development of Surface-EMG Based Single Finger Movement Identification and Control for a Bionic Arm

Abstract

Varshitha K, Praveen LS, Nagananda SN and Preetham S

Bionic arm is a robotic arm that offers many of human arm features such as hand grasp and release, flexionextension, elbow flexion-extension, supination-pronation etc. which is integrated with the nervous system and controlled by Electromyogram signals. Invasive and non-invasive methods are used to collect the EMG signal from amputees. In spite of difficulty caused by invasive methods, non-invasive methods are being opted in today's recent Bionic Arms. To overcome the some drawbacks of non-invasive methods proper classification algorithms has to be chosen for controlling individual finger movements in Bionic Arm. In this paper, initially various feature extraction; reduction and classification algorithms are implemented on EMG data of different subjects which is available from Ninapro database. From the results obtained, MAV algorithm for feature extraction, PCA algorithm for feature reduction and KNN algorithm for feature classification are chosen since they gave more accuracy compared to others after implementing on EMG data of different subjects. By employing this algorithms 95% accuracy is achieved for controlling individual finger movements in Bionic Arm. Response time between grasp and release actions of fingers in Bionic Arm obtained after implementing on processor is less than 1ms.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward