..

广义谎言理论与应用杂志

Generalized Lie Algebroids and Connections over Pair of Diffeomorphic Base Manifolds

Abstract

Constantin M. Arcus

Extending the definition of Lie algebroid from one base manifold to a pair of diffeomorphic base manifolds, we obtain the generalized Lie algebroid. When the diffeomorphisms used are identities, then we obtain the definition of Lie algebroid. We extend the concept of tangent bundle, and the Lie algebroid generalized tangent bundle is obtained. In the particular case of Lie algebroids, a similar Lie algebroid with the prolongation Lie algebroid is obtained. A new point of view over (linear) connections theory of Ehresmann type on a fiber bundle is presented. These connections are characterized by a horizontal distribution of the Lie algebroid generalized tangent bundle. Some basic properties of these generalized connections are investigated. Special attention to the class of linear connections is paid. The recently studied Lie algebroids connections can be recovered as special cases within this more general framework. In particular, all results are similar with the classical results. Formulas of Ricci and Bianchi type and linear connections of Levi-Civita type are presented.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward