..

广义谎言理论与应用杂志

Geometry of Noncommutative k-Algebras

Abstract

Arvid Siqveland

Let X be a scheme over an algebraically closed field k, and let x ∈ SpecR ⊆ X be a closed point corresponding to the maximal ideal m ⊆ R. Then OˆX,x is isomorphic to the prorepresenting hull, or local formal moduli, of the deformation functor DefR/m :  → Sets. This suffices to reconstruct X up to etal´e coverings. For a noncommutative k-algebra A the simple modules are not necessarily of dimension one, and there is a geometry between them. We replace the points in the commutative situation with finite families of points in the noncommutative situation, and replace the geometry of points with the geometry of sets of points given by noncommutative deformation theory. We apply the theory to the noncommutative moduli of three-dimensional endomorphisms.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward