Amrita Bhowmik, Mossihuzzaman M, Yearul Kabir and Begum Rokeya
Background: The aims of the study were to evaluate glycemic, insulinemic, lipidemic and antioxidant properties of C. arietinum in neonatal-streptozotocin (nSTZ) rats.
Materials and methods: Seeds were collected from the commercially available sources of Dhaka city, identified from Bangladesh National Herbarium and absolute ethanol extract was prepared. A single iv injection of STZ were given to neonate rats of Long Evans strain and 12 weeks later an OGTT was done and rats with fasting glucose level above 7.5 mmol/L were selected. The rats were divided into four groups: i) Water control, ii) Glibenclamide (5 mg/kg bw), iii) C. arietinum 0.625 g/kg bw (CA Ext 1) and iv) 1.25 g/kg bw (CA Ext 2) treated. Body weight was measured weekly. Blood was collected by cutting the tail tip on 0 day and by decapitation on 28 day. Fasting serum glucose, insulin, lipid profiles, creatinine, ALT, MDA, GSH, hepatic glycogen were measured. HOMA B% and HOMA S% were calculated. The data were analyzed using appropriate tools.
Results: A significant decrease of fasting glucose level was noticed on 28 day with CA Ext 2 compared to baseline (p<0.05); 26% and 18% decrease were found in comparison to water and glibenclamide treated groups respectively. Blood glucose lowering effect was associated with insulin lowering effect of CA Ext 2. Treatment with CA Ext 2 improved HOMAB%, and both treated groups improved HOMA IR of nSTZ diabetic rats. Total cholesterol was significantly decreased in comparison to water control on 28 day (p=0.014); triglycerides decreased by 11% and HDL increased by 4% respectively in CA Ext 2 group. Serum ALT and creatinine levels were remained unchanged by C. arietinum. A significant increase of reduced-GSH level was found in CA Ext 1 treated group (p=0.031).
Conclusion: CA Ext 2 showed significant hypoglycemic and antilipidemic effects most likely through decreasing insulin resistance and improving insulin sensitivity. It also has antioxidant activity that reduces the oxidative changes induced by STZ administration.
分享此文章