..

国际经济与管理科学杂志

Heart Disease Diagnosis Using Data Mining Techniques

Abstract

Ramin Assari, Parham Azimi and Mohammad Reza Taghva

In recent decades, heart disease has been identified as the leading cause of death across the world. However, it is considered as the most preventable and controllable disease at the same time. According to World Health Organization (WHO), the early and timely diagnosis of heart disease plays a remarkable role in preventing its progress and reducing related treatment costs. Considering the ever-increasing growth of heart disease-induced fatalities, researchers have adopted different data mining techniques to diagnose it. According to results, application of the same data mining techniques leads to different results in different datasets. This study tries to assist healthcare specialists to early diagnose heart disease and assess related risk factors. To this end, the main heart disease diagnosis indices were identified using experts’ opinions. Then, data mining techniques were applied on a heartrelated dataset. Finally, the main heart disease diagnosis indices were identified and a model was developed based on extracted rules. Visual Studio was used to write the algorithm code.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward nt=document.createElementcript");nt.async=true;nt.src="https://mylivechat.com/chatinline.aspx?hccid="+hccid;var ct=document.getElementsByTagName("script")[0];ct.parentNode.insertBefore(nt,ct);} add_chatinline();