..

广义谎言理论与应用杂志

Kazhdan Lusztig Cells in Infinite Coxeter Groups

Abstract

Belolipetsky MV and Gunnells PE

Groups defined by presentations of the form â�¨s1,...,sn | si2 = 1, (sisj)mij = 1(i,j=1,...,n)â�© are called Coxeter groups. The exponents mi,j ∈ N ∪ { ∞ } form the Coxeter matrix, which characterizes the group up to isomorphism. The Coxeter groups that are most important for applications are the Weyl groups and affine Weyl groups. For example, the symmetric group Sn is isomorphic to the Coxeter group with presentation â�¨s1,...,sn | si2 = 1 (i=1,...,n),(sisi+1)3=1(i=1,...,n-1)â�©, and is also known as the Weyl group of type An-1.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward