..

健康与医学信息学杂志

Performance Analysis of Data Mining Algorithms: Breast Cancer Predictive Models

Abstract

Appiah Stephen* and Adebayo Felix Adekoya

One out of eight women over their lifetime will be diagnosed of breast cancer and it is recorded to be the world major cause of women’s deaths. Data mining methods are an effective way to classify data, especially in medical field, where those methods are widely used in diagnosis and analysis to make decisions. In this study, a performance comparison between five different data mining technique: Random forest, random tree, Bayes net, Naïve Bayes and J48 on the breast cancer Wisconsin (Diagnostic) data set is conducted. It is aimed to assess the correctness in classifying data with respect to efficiency and effectiveness of each algorithm in terms of accuracy, precision, sensitivity/recall and specificity. Experimental outcome indicates that Bayes net and random forest gives the highest weighted average accuracy of 97.1% with lowest type I and II error rate. All experiments conducted in WEKA data mining tool.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward