..

生物识别与生物统计学杂志

Statistical Approaches to Combine Genetic Association Data

Abstract

Sharon M Lutz, Tasha Fingerlin and David W Fardo

 In an attempt to discover and unravel genetic predisposition to complex traits, new statistical methods have emerged that utilize multiple sources of data. This appeal to data aggregation is seen on various levels: across genetic variants, across genomic/biological/environmental measures and across different studies, often with fundamentally differing designs. While combining data can increase power to detect genetic variants associated with disease phenotypes, care must be taken in the design, analysis, and interpretation of such studies. Here, we explore methodologies employed to combine sources of genetic data and discuss the prospects for novel advances in the fields of statistical genetics and genetic epidemiology.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward