..

材料科学与工程杂志

Study of Cerium-modified Triazinedithiol Electrodeposited Nanofilm on Corrosion Protection for Aluminum Alloy

Abstract

Wang F, Wang J, Jia M, Shi M and Zhang F

The cerium-modified polymeric nanofilm of 6-(N,N-dibutyl)amino-1,3,5-triazine-2,4-dithiol monosodium (DBN) was fabricated by two-step potential electrodeposition onto aluminum alloy for corrosion protection. The structure, surface wettability and corrosion protection of the polymeric nanofilm were investigated by means of fourier transform infrared spectroscopy (FT-IR), water contact angle (WCA), open-circuit potential (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), respectively. FT-IR result revealed that DBN monomer had successfully been polymerized on aluminum alloy surface by electrochemical deposition in the absence and presence of cerium and the addition of cerium had no influence on FT-IR of the polymeric nanofilm. The result of surface wettability showed that WCA of aluminum alloy cerium-modified polymeric nanofilm was slightly higher compared with that without cerium. Electrochemical measurements demonstrated that the cerium-modified polymeric nanofilm on aluminum alloy surface exhibited remarkable corrosion protection property, which could be ascribed to the precipitation of cerium oxides or hydroxides on aluminum surface or the coordination between cerium and heterocyclic π-electron in polymeric nanofilm to prevent corrosive particles to the surface of aluminum substrate.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward