Cynthia L Browning, Therry The, Michael D Mason and John Pierce Wise Sr.
The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO2) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO2 nanoparticles are not cytotoxic or clastogenic to human skin cells.
分享此文章