..

系统发生学与进化生物学杂志

Candidate Susceptibility Genes for Powdery and Downy Mildew in Watermelon and Squash

Abstract

Ryan Porterfield and Geoffrey Meru

Powdery mildew (PM) caused by Podosphaera xanthii and downy mildew (DM) caused by Pseudoperonospora cubensis are two of the most economically important diseases for watermelon (Citrullus lanatus) and squash (Cucurbita pepo, C. maxima and C. moschata). Traditional breeding for resistance to PM and DM is resource intensive, often requiring decades’ long phenotyping and selection processes. As an alternative, durable and broad-spectrum resistance to PM and DM can be obtained through loss-of-function of susceptibility genes in elite breeding material. Susceptibility genes for PM [Mildew-Locus-O (MLO) and Powdery Mildew Resistance (PMR)] and DM [Downy Mildew Resistance (DMR)] have been functionally proven in model plant species. Previous studies have reported candidate MLO genes for C. lanatus and C. pepo, but none for C. maxima and C. moschata. On the contrary, no PMR or DMR candidate genes have been identified for C. lanatus or any of the Cucurbita species. The current study used bioinformatics approaches based on sequence similarity, phylogenetic relationships and presence of conserved domains to predict candidate MLO genes in C. maxima and C. moschata and PMR and DMR genes in C. lanatus, C. pepo, C. maxima and C. moschata. Four MLO homologs in C. maxima and five in C. moschata clustered within Clade V, a clade containing all MLO susceptibility genes in dicots, and had highly conserved transmembrane domains and C-terminal PM interaction motif. Sixty-three candidate PMR genes were identified among the four species, 16 of which had close similarity to functionally proven PMR homologs in model species. Similarly, 37 candidate DMR genes were identified 12 among which clustered with functionally proven DMR homologs in model species. Functional analysis of the genes identified in the current study will reveal their role in pathogenesis and assess their potential for manipulation through gene editing methods to generate novel resistant plant genotypes.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward