..

系统发生学与进化生物学杂志

Computational Phylogenetic Study and Data Mining Approach to Laccase Enzyme Sequences

Abstract

Raghunath Satpathy, Rashmiranjan Behera, Susant Ku Padhi and Rajesh Kumar Guru

Currently data mining is an essential tool to discover the hidden data and important patterns from a large data set. The present work is a pilot study that compares the result of sequence based phylogenetic study and some of the physicochemical and structural feature based clustering of Laccase enzyme sequences. Total of 50 homologous sequences were obtained specific to each of the organism like plant, fungi and bacteria. Multiple sequences alignment of sequences was performed followed by phylogenetic tree construction and consistency study also to observe the major clusters. Again the major domain and motif analysis was done to support the study in the divergence pattern of Laccase enzyme sequences. There after 13 numbers of physicochemical and structural features were computed for each enzyme sequences. Then data normalisation and k-means clustering technique revealed that the fungi, bacteria and plant were obtained in three distinct clusters. The analysis indicates that the result of sequence based classification is in a good agreement with physicochemical basis of classification of proteins. The methods can be further optimised for different clustering algorithm to obtain specific physicochemical features that would help to classification of proteins.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

分享此文章

索引于

相关链接

arrow_upward arrow_upward